Technology Dynamics & Sustainable Development

Technology Dynamics & Sustainable Development

Delft University of Technology

Delft University of Technology

2

Delft University of Technology

Universities in The Netherlands

University	Students (±)	
Utrecht University	23.000	
Universiteit van Amsterdam	22.000	
University of Groningen	20.000	
Erasmus University Rotterdam	16.000	
Vrije Universiteit Amsterdam	16.000	
University of Nijmegen	15.000	
Leiden University	15.000	
Delft University of Technol	ogy 13.000	
Universiteit Maastricht	11.000	
Tilburg University	10.000	
Technische Universiteit Eindho	oven 7.000	
University of Twente	7.000	
Wageningen University	4.000	

Electrical Engineering, Mathematics and Computer Science Applied Sciences

Civil Engineering Aerospace and Geosciences Engineering

Technology, Policy and Management

Industrial Design Engineering

Mechanical Engineering & Marine Technology

Scientific and support staff (2004)

Disciplines Total number of students: 13.382 (2004, excluding Ph.D. students)

- Aerospace Engineering 1655 **Applied Earth Sciences** 246 **Applied Physics** 509 Architecture, Urban Planning and Housing 2998 Chemical and Biochemical Engineering 315 **Materials Science Civil Engineering** 1420 **Electrical Engineering** 552 Geodetic Engineering Industrial Design Engineering 1648 Life Science and Technology 184 Mechanical Engineering 1311
 - Marine Technology
- Systems Engineering and Policy Analyses
 - Technical Mathematics
 - Technical Informatics 1

Technology Dynamics and Sustainable Development

- Technology Strategy
- Impact of new Technology
- Innovation Policy
- //For Sustainable Development
- Education of Engineers

Supporting societal actors in developing a sustainable technology policy

Supporting engineers in determining their strategy

To teach engineers how to innovate within a societal context

"We've put the exhaust pipe on the inside!"

Engineers know as little of technology development as fish know of hydrodynamics

How to involve society in innovation for Sustainability

Innovation in Modern day Society

March 21, 2011

trends in technological innovation

- Challenge of Sustainable Development the need for leaps in efficiency
- Trends:
 - Complexity
 - Globalization
 - Emancipation
 - Knowledge economy

Increasing Complexity

- Increasing complexity, less design redundancies => barriers for change
- Increasing number of expertise fields involved ± cars
- Innovation only manageable by modularity and involving suppliers,

Complexity: a plethora of information

March 21, 2011

lft

Globalization R&D

March 21, 2011

Emancipation & Civil society

•Far more stakeholders involved in decisions

•Open & transparent process: new stakeholders might emerge

•Government approval not sufficient for public legitimacy

Emancipation: Participation in Higher Education 1970-1996

	1970	1996	Increase %
Albania	25469	34257	34,5
Austria	59778	293172	390,4
Bulgaria	99596	262757	163,8
Finland	59769	226458	278,9
Iceland	1706	7908	363,5
Italy	687242	1892542	175,4
Netherlands	231167	468970	102,9
Norway	50047	185320	270,3
Romania	151885	411687	171,1
Spain	224904	1684445	649,0
Sweden	144254	275217	90,8
United Kingdom	601300	1891450	214,6

March 21, 2011

The knowledge economy

- Knowledge production becomes harder but more important for the economy:
 - Value increasingly created by knowledge
- No national protection for research: economies of scale -> concentration

Clustering

- Research is taking place 'where the action is'
- Researchers like to live in a vivid culture
- Informal exchange of know how
- Rich labor markets

Research & Development clusters

20

March 21, 2011

Legitimations of Research

Have shifted:

- Glorifying Gods' creation, Medieaval
- Enlightenment, abandoning superstition, 18th century
- Progress, raising society, 19th century
- Utility, Science as production factor, 20th century
- Creating a Sustainable Society, an enterprise for which everybody is invited, but that has consequences for doing research

